ICML2019-深度强化学习文章汇总

发布时间:2019-05-10 21:47:25   来源:自考网
深度强化学习-Report
来源:icml2019conference
编辑:DeepRL
强化学习是一种通用的学习、预测和决策范式。RL为顺序决策问题提供了解决方法,并将其转化为顺序决策问题。RL与优化、统计学、博弈论、因果推理、序贯实验等有着深刻的联系,与近似动态规划和最优控制有着很大的重叠,在科学、工程和艺术领域有着广泛的应用。
RL最近在学术界取得了稳定的进展,如Atari游戏、AlphaGo、VisuoMotor机器人政策。RL也被应用于现实场景,如推荐系统和神经架构搜索。请参阅有关RL应用程序的最新集合。希望RL系统能够在现实世界中工作,并具有实际的好处。然而,RL存在着许多问题,如泛化、样本效率、勘探与开发困境等。因此,RL远未被广泛部署。对于RL社区来说,常见的、关键的和紧迫的问题是:RL是否有广泛的部署问题是什么如何解决这些问题
在国际会议上的机器学习(ICML)是一个国际学术会议上机器学习。它是机器学习和人工智能研究中高影响力的两个主要会议之一。每年的ICML中都有大量的关于强化学习的文章,其中2019总共接收强化学习论文46篇(已经是很高比例了,快接近10%),下面是本次会议文章的总结,文章pdf版本汇总下载链接见文章末尾。

方法类文章

  • EfficientOff-PolicyMeta-ReinforcementLearningviaProbabilisticContextVariables
  • BayesianActionDecoderforDeepMulti-AgentReinforcementLearning
  • QuantifyingGeneralizationinReinforcementLearning
  • PolicyCertificates:TowardsAccountableReinforcementLearning
  • NeuralLogicReinforcementLearning
  • ProbabilityFunctionalDescent:AUnifyingPerspectiveonGANs,VariationalInference,andReinforcementLearning
  • Few-ShotIntentInferenceviaMeta-InverseReinforcementLearning
  • CalibratedModel-BasedDeepReinforcementLearning
  • Information-TheoreticConsiderationsinBatchReinforcementLearning
  • TamingMAML:Controlvariatesforunbiasedmeta-reinforcementlearninggradientestimation
  • OptionDiscoveryforSolvingSparseRewardReinforcementLearningProblems

优化类文章

  • FingerprintPolicyOptimisationforRobustReinforcementLearning
  • CollaborativeEvolutionaryReinforcementLearning
  • ComposingValueFunctionsinReinforcementLearning
  • Task-AgnosticDynamicsPriorsforDeepReinforcementLearning
  • PolicyConsolidationforContinualReinforcementLearning

探索-利用及模型参数

  • ExplorationConsciousReinforcementLearningRevisited
  • DynamicWeightsinMulti-ObjectiveDeepReinforcementLearning
  • ControlRegularizationforReducedVarianceReinforcementLearning
  • Dead-endsandSecureExplorationinReinforcementLearning
  • Off-PolicyDeepReinforcementLearningwithoutExploration
  • Dimension-WiseImportanceSamplingWeightClippingforSample-EfficientReinforcementLearning
  • ExtrapolatingBeyondSuboptimalDemonstrationsviaInverseReinforcementLearningfromObservations
  • OntheGeneralizationGapinReparameterizableReinforcementLearning

多智能体

  • SocialInfluenceasIntrinsicMotivationforMulti-AgentDeepReinforcementLearning
  • CURIOUS:IntrinsicallyMotivatedMulti-Task,Multi-GoalReinforcementLearning
  • Finite-TimeAnalysisofDistributedTD(0)withLinearFunctionApproximationonMulti-AgentReinforcementLearning
  • MaximumEntropy-RegularizedMulti-GoalReinforcementLearning
  • Multi-AgentAdversarialInverseReinforcementLearning
  • Grid-WiseControlforMulti-AgentReinforcementLearninginVideoGameAI
  • QTRAN:LearningtoFactorizewithTransformationforCooperativeMulti-AgentReinforcementLearning
  • Actor-Attention-CriticforMulti-AgentReinforcementLearning

图模型强化学习

  • TibGM:ATransferableandInformation-BasedGraphicalModelApproachforReinforcementLearning
  • SOLAR:DeepStructuredRepresentationsforModel-BasedReinforcementLearning

分布式强化学习

  • StatisticsandSamplesinDistributionalReinforcementLearning
  • DistributionReinforcementLearningforEfficientExploration

应用类

  • ActionRobustReinforcementLearningandApplicationsinContinuousControl
  • TransferLearningforRelatedReinforcementLearningTasksviaImage-to-ImageTranslation
  • LearningActionRepresentationsforReinforcementLearning
  • TheValueFunctionPolytopeinReinforcementLearning
  • GenerativeAdversarialUserModelforReinforcementLearningBasedRecommendationSystem

其他

  • Kernel-BasedReinforcementLearninginRobustMarkovDecisionProcesses
  • ADeepReinforcementLearningPerspectiveonInternetCongestionControl
  • ReinforcementLearninginConfigurableContinuousEnvironments
  • TighterProblem-DependentRegretBoundsinReinforcementLearningwithoutDomainKnowledgeusingValueFunctionBounds
注:部分文章还没有在arxiv上,或者没有的请自行Google
paper-PDF版本(资源获取)
1、搜索“Deep-RL”或者扫描下面"二维码",关注本公众号
2、后台回复:ICML2019获取ICML2019深度强化学习相关论文pdf版本。
深度强化学习算法
算法、框架、资料、前沿信息等
长按二维码关注我们吧
推荐文章